DAFT tutorials

1: Association of two helices from sequence

This tutorial shows how DAFT can be used to study the association of two helices in
a simple membrane. The helices are built from sequence, and this step uses PyMOL,
which needs to be available. In addition, GROMACS needs to be available to run the
simulations. All other components required are distributed together with DAFT, and
should be available in the DAFT directory. The tutorial assumes a basic working
knowledge of BASH.

Step 1: Setting up the environment

To make the commands easier to follow we set some variables prior to running
DAFT. In particular, we specify the locations of GROMACS and of PyMOL. Note that
the locations may differ on your machine, and the correct paths should be specified.

GMX=/usr/local/gromacs-4.6.1/bin/GMXRC
PYMOL=/usr/local/bin/pymol

Step 2: Setting up sequences

Now we define the amino acid sequences. The sequences used are those of
glycophorin A wild type and the G831 mutant. We specify that they are helical by
adding “:H” at the end. This specification is optional, as sequences are built helical
by default, but it avoids using DSSP during topology generation.

wt=RASLIIFGVMAGVIGTILIN:H
mut=RASLITFGVMAIVIGTILIN:H

These sequences correspond to the ones commonly used in TOXCAT assays, and
differ from the biological ones in the anchor regions.

Step 3: Initializing the assays

From the sequences, we setup assays of 500 simulations (-n 500), of 512 ns each (-
time 512), using an initial separation of 3.5 nm (-d 3.5) and a distance over z of 5 nm
(-dz 5). We will use a POPC bilayer (-1 POPC) and use regular Martini water (-sol W)
to solvate the system. The bilayer and solvent are built by insane, which is called by
DAFT.

To support the full range of features from insane, a specific syntax was developed,
allowing specifying insane options on the command-line of DAFT. The basic syntax
for this is —--insane-option=value, but multiple options can be grouped
together as --insane{-optionl=valuel,-option2=value2}. This yields
the following command for setting up the simulations:

/path/to/DAFT/daft.sh -gmxrc $GMX -pymol $PYMOL \
-tm WT=$wt -tm G83I=Smut -d 3.5 -dz 5 —n 500 -time 512 \
—--insane{-1=POPC,-s0l=W} -c 2

The option -tm specifies a transmembrane sequence, which is defined as
[name=]sequence|[:structure]. If a name is given, it will be used for naming
directories and it can be referred to when making combinations.

The option -c specifies the combinations to be made. Specifying ‘2’ means making
systems of dimers for each sequence. Heterodimers can be made by specifying ‘2!".
Alternatively, the specification -c WT,WT -c G831,G83I could have been used to set
up homodimers and -c WT,G83I could have been used for heterodimers. By default,
if the option -c is not given, DAFT builds one type of system, combining all the single
components.

The setup of 1000 simulation systems like this will take a few minutes (4m20 on a
2.30 GHz i7). The result will be two directories and several intermediate files, most
notably the atomistic structures built, and the coarse grained structures and
topologies:

daft-tutorial-1$ 1s -1

total 136

drwxr-xr-x 3 tsjerk staff 102 Feb 16 12:38 G83I-G83I
-rw-r--r-- 1 tsjerk staff 296 Feb 16 12:38 G83I-mart.ndx
-rw-r--r-- 1 tsjerk staff 2710 Feb 16 12:38 G83I-mart.pdb
-rw-r--r-- 1 tsjerk staff 7600 Feb 16 12:38 G83I.itp
-rw-r--r-— 1 tsjerk staff 12196 Feb 16 12:38 G83I.pdb
-rw-r--r-- 1 tsjerk staff 152 Feb 16 12:38 G83I.top
drwxr-xr-x 3 tsjerk staff 102 Feb 16 12:38 WT-WT
-rw-r--r-- 1 tsjerk staff 289 Feb 16 12:38 WT-mart.ndx
-rw-r--r-- 1 tsjerk staff 2643 Feb 16 12:38 WT-mart.pdb
-rw-r--r-- 1 tsjerk staff 7447 Feb 16 12:38 WT.itp
-rw-r--r-- 1 tsjerk staff 11872 Feb 16 12:38 WT.pdb
-rw-r--r-—- 1 tsjerk staff 146 Feb 16 12:38 WT.top
-rw-r--r-- 1 tsjerk staff 229 Feb 16 12:15 cmd.sh

Both directories contain a subdirectory ‘daft’, which contains the solvated starting
structures, each in its own folder. Each of these folders contains the data required
for a single run:

daft-tutorial-1$ 1ls -1 WT-WT/daft/daft-0001

total 440

-rw-r--r-- 1 tsjerk staff 7447 Feb 16 12:38 WT.itp
-rw-r--r-- 1 tsjerk staff 160681 Feb 16 12:38 daft.gro
-rw-r--r-- 1 tsjerk staff 33740 Feb 16 12:38 daft.ndx
-rw-r--r-- 1 tsjerk staff 5171 Feb 16 12:38 daft.pdb
-rw-r--r-- 1 tsjerk staff 620 Feb 16 12:38 daft.top
-rw-r--r-- 1 tsjerk staff 214 Feb 16 12:38 martinate-run.sh

Step 4: Running simulations

The script ‘martinate-run.sh’ contains the command to execute the run in its
directory, and can be called directly, or the data can be transferred to a compute
cluster, GRID, or cloud facility and the script can be run from a job. We note that the
script relies on martinate.sh, which is distributed together with DAFT. A working
version of GROMACS is also required.

Step 5: Analysis

The analysis focuses on interaction energy and on relative orientations and contacts
of the components. martinate.sh writes energy statistics for each component and
each combination of components, including membrane and/or solvent.

Energy analysis

At each time, the DAFT ensemble has a characteristic energy distribution. This
distribution develops over time and, given sufficient time, will converge to the
equilibrium ensemble. This equilibrium ensemble will probably not be reached
though, as the time scales are too short for that.

The evolution of the energy distribution over time, and of the interaction energy
distribution in particular, can be followed from the twenty-one 5% points
(vigintiles) and the mean. To construct these distributions across the ensemble, first
the energy terms need to be extracted from the binary energy files Gromacs writes,
and for each term the data need to be gathered. To facilitate that, a bash script
(eneallsh) is provided with DAFT to process a series of energy files and extract all
interaction energy terms:

cd WT-WT/daft
/path/to/DAFT/Analysis/eneall.sh */*.edr

This yields the following set of files:

Membrane-Membrane.dat
Membrane-Solvent.dat
A WT-Membrane.dat

A WT-A WT.dat

A WT-B WT.dat

A WT-Solvent.dat

B WT-Membrane.dat
B_WT-B_WT.dat

B WT-Solvent.dat
Solvent-Solvent.dat

The first line in each file contains the time, while each following row corresponds to
the interaction energy time series for a single run. Rows from time series shorter
than the maximum run length are padded with ‘NA’, such that the whole data matrix

is filled. Further processing of these files can be done with the ‘little-r’ script
eneana.r, which is a command-line operated R script to compute the vigintiles and
graph them, and perform a non-linear least-squares fit of the mean interaction
energy over time to a delayed decay model. Note that the latter is written
specifically for the interaction energy between two components for which the
binding assay is run.

/path/to/DAFT/Analysis/eneana.r A WT-B WT.dat

This writes a postscript file A WT-B_WT.ps, which contains a graph of the vigintiles
over time, like

Interaction Energy (kJ/mol)

-400
|

T T T T T T
0 100 200 300 400 500

Time (ns)

The dashed line shows the fitted delayed decay model for the mean interaction
energy, shown in grey. The plateau value of this model is indicated by the horizontal
dotted line. The program also prints the summary of the fit of the average:

Formula: y ~ delayedDecay(tm, rateO, delay, plateau, rate)

Parameters:

Estimate Std. Error t value Pr(>|t])
rate0 3.300e-02 2.458e-03 13.43 <2e-16 ***
delay 4.025e+01 2.303e+00 17.48 <2e-16 ***
plateau -2.150e+02 7.025e-01 -305.97 <2e-16 ***
rate 1.539e-02 7.523e-04 20.46 <2e-16 ***

Signif. codes: 0 ‘#**x’ (0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * " 1
Residual standard error: 15.19 on 1342 degrees of freedom

Number of iterations to convergence: 7
Achieved convergence tolerance: 9.091le-06

In addition, the summary of the fit for the median value (in red) is printed:

Formula: med ~ delayedDecay(tm, rate0O, delay, plateau, rate)

Parameters:

Estimate Std. Error t value Pr(>|t])
rate0 3.984e-01 5.045e-02 7.896 5.95e-15 #***
delay 6.195e+01 3.625e-01 170.882 < 2e-16 ***
plateau -2.179e+02 7.722e-01 -282.162 < 2e-16 ***
rate 1.537e-02 3.425e-04 44.888 < 2e-16 **x*

Signif. codes: 0 ‘**x’ (0,001 ‘**’' 0.01 ‘*’ 0.05 ‘.’ 0.1 * " 1
Residual standard error: 19.68 on 1342 degrees of freedom

Number of iterations to convergence: 12
Achieved convergence tolerance: 6.885e-06

Orientation analysis

In addition to the analysis of the interaction energies, the relative orientations of the
components are investigated. The first step for this is reordering all trajectories,
such that the assemblies are clustered. This can be done in one go using the
following command:

for trj in */*.xtc; do echo 1 | gmx trjconv -pbc cluster -s
${trj%%s.*}.tpr -f $trj -o ${trj%.xtc}-clus.xtc; done

The next step is determining the relative orientations over time for each of the
simulations. This is done with a Gromacs’ style C program, called doriana (domain
orientation analysis). Doriana first determines the internal reference frame for each
domain/component from a reference structure. It then calculates the change in
orientation from the start by least-squares fitting. The resulting orientations are
used to determine the relative orientations between domains.

In the case of homodimers or related components, it is advisable to use the same
starting orientation, such that the internal frames at the start are identical, and a
symmetric binding will yield a 180 degree rotation. This already applies to our case
here, and we construct a doriana reference by copying the starting structure twice
with sed.

sed -n-e '/*"ATOM/{s/"\(\{21\}\)./\1></;H;s/></A/p;}’
-e '${x;s/></B/g;p;} WT.pdb > WT-doriref.pdb

To understand this better, the different sed elements are explained here:

-e ‘/"ATOM/{..}' Apply the statements between curly
braces to 1lines starting with
‘ATOM’

s/”\ (. \{21\}\)./\1></ Substitute the first 21+1
characters from the 1line by the
first 21+'><’

H Store the line in the (H)old space

s/></A/p Substitute the characters ‘><’ 1in
the pattern space by ‘A’ and
print.

-e '${..}' Execute the statements between
curly braces at the end of the
file.

X Exchange the pattern space and the

hold space, 1i.e., retrieve the
data stored in the hold space.

s/></B/g Substitute ‘><’ for ‘B’ globally
in the pattern space, resetting
the chain ID in all lines.

P Print the pattern space.

Effectively, this takes a PDB file with one chain, prints each line with chain label ‘A’
and afterwards prints each line again, but with chain label ‘B’, yielding a PDB file
with two copies of the same chain. This file we use as reference for the orientation
analysis, but first we construct a matching index file (the lines can be copied):

N=$(grep -c "*"ATOM" WT.pdb)

{ echo "[AB]"; seq $((2*N)); echo "[A]"; seq $N; echo "[B]"; seq $((N+1)) $((2*N)); } >
doriref.ndx

To process the whole set of data, we use a for loop again (the line can be copied):

for xtc in */*-clus.xtc; do (cd ${i%/*}; echo 2 1 2 | doriana -s ../oriref.pdb -n ../oriref.ndx -f
${xtc#*/} -o doriana.pdb -ext doriana.dat); done

This yields a large amount of data that is processed further in R with the R script
doriana.r:

/path/to/DAFT/Analysis/doriana.r 'daft-*/' doriana.dat

The script calculates 2D kernel density estimates for the different combinations of
the COM-COM distance 6 and the angles a, B, ¢, 6, y, which are shown in the

following figure:

= out-of-plane
;= position

:= phase
forward tilt
sideway tilt

€ o6 ™A

