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Rainer A Böckmann4, Manfred Lindau3, Ralf Mohrmann2*‡, Dieter Bruns1*‡

1Institute for Physiology, Saarland University, Homburg, Germany; 2Zentrum für
Human- und Molekularbiologie, Saarland University, Homburg, Germany; 3Group
Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen,
Germany; 4Computational Biology, Department of Biology, Friedrich-Alexander
University, Erlangen, Germany

Abstract Vesicle fusion is mediated by an assembly of SNARE proteins between opposing
membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve
mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the
fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is
essential for efficient Ca2+-triggered exocytosis and actively promotes membrane fusion as well as
fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the
TMD region spanning the vesicle’s outer leaflet strongly impairs exocytosis and decelerates fusion
pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or
isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion
beyond the rate found for the wildtype protein. These observations provide evidence that the
synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the
pace of fusion pore expansion.
DOI: 10.7554/eLife.17571.001

Introduction
SNARE-mediated membrane fusion comprises a series of mechanistic steps requiring both protein-
protein as well as protein-lipid interactions. Protein-protein interactions involving SNARE proteins in
the fusion process have been explored in great detail (Jahn and Fasshauer, 2012; Sudhof and
Rothman, 2009), but the functional role of SNARE-lipid interplay has remained enigmatic. Previous
studies provided conflicting views on the requirement of proteinaceous membrane anchors of
SNARE proteins for efficient neurotransmitter release or vacuole-vacuole fusion (Chang et al., 2016;
Fdez et al., 2010; Grote et al., 2000; Pieren et al., 2015; Rohde et al., 2003; Wang et al., 2004;
Zhou et al., 2013). Even more unclear is how a proteinaceous TMD may regulate the membrane
fusion process. Experiments in reduced model systems have suggested that lipidic SNARE-anchors
are inefficient in driving proper fusion between artificial liposomes (McNew et al., 2000), cells
expressing ‘flipped’ SNAREs (Giraudo et al., 2005), or between liposomes and lipid nanodiscs
(Bao et al., 2015; Shi et al., 2012). However, these experiments were unable to track kinetic inter-
mediates en route to fusion (e.g. priming, triggering or fusion pore expansion) leaving the questions
unanswered whether and if so, at which step TMDs of SNARE proteins may regulate fast Ca2+-trig-
gered exocytosis and membrane fusion (Fang and Lindau, 2014; Langosch et al., 2007). In compar-
ison to other single-pass transmembrane proteins, SNARE TMDs are characterized by an
overrepresentation of ß-branched amino acids (e.g. valine and isoleucine, ~40% of all residues
[Langosch et al., 2001; Neumann and Langosch, 2011]), which renders the helix backbone
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conformationally flexible (Han et al., 2016; Quint et al., 2010; Stelzer et al., 2008). In an a-helix,

non-ß-branched residues like leucine can rapidly switch between rotameric states, which favor van

der Waals interactions with their i ± 3 and i ± 4 neighbors, thereby forming a scaffold of side chain

interactions that defines helix stability (Lacroix et al., 1998; Quint et al., 2010). Steric restraints act-

ing on the side chains of ß-branched amino acids (like valine and isoleucine) instead favor i ± 4 over i

± 3 interactions leading to local packing deficiencies and backbone flexibility. In vitro experiments

have suggested that membrane-inserted short peptides mimicking SNARE TMDs (without a cyto-

plasmic SNARE motif) exhibit a significant fusion-enhancing effect on synthetic liposomes depending

on their content of ß-branched amino acids (Hofmann et al., 2006; Langosch et al., 2001). Further-

more, simulation studies have shown an inherent propensity of the SNARE TMDs or the viral hemag-

glutinin fusion peptide to disturb lipid packing, facilitating lipid splay and formation of an initial lipid

bridge between opposing membranes (Kasson et al., 2010; Markvoort and Marrink, 2011;

Risselada et al., 2011).
Here, we have investigated the functional role of the synaptobrevin-2 (syb2) TMD in Ca2+-trig-

gered exocytosis by systematically mutating its core residues (amino acid positions 97–112) to either

helix-stabilizing leucines or flexibility–promoting ß-branched isoleucine/valine residues. In a gain-of-

function approach TMD mutants were virally expressed in v-SNARE deficient adrenal chromaffin cells

(dko cells), which are nearly devoid of exocytosis (Borisovska et al., 2005). By using a combination

of high resolution electrophysiological methods (membrane capacitance measurements, amperome-

try) and molecular dynamics simulations, we have characterized the effects of the mutations in order

to delineate syb2 TMD functions in membrane fusion. Our results indicate an active, fusion promot-

ing role of the syb2 TMD and suggest that structural flexibility of the N-terminal TMD region cata-

lyzes fusion initiation and fusion pore expansion at the millisecond time scale. Thus, SNARE proteins

do not only act as force generators by continuous molecular straining, but also facilitate membrane

merger via structural flexibility of their TMDs. The results further pinpoint a hitherto unrecognized

eLife digest Neurons signal to other cells by releasing chemicals known as neurotransmitters.
The neurotransmitters are stored in the neuron in small membrane-bound compartments called
vesicles. When a neuron receives an electrical impulse, this ultimately triggers the vesicles to fuse
with the cell membrane and release their contents into the gap between the neurons. This process is
known as exocytosis. Other cells called neuroendocrine cells, which can receive signals from
neurons, also undergo exocytosis to release chemicals into the bloodstream.

A group of membrane-bound proteins called SNAREs help a vesicle to fuse with the cell
membrane. SNARE proteins are embedded in both the vesicle and cell membrane, and force them
into close proximity. When the two membranes make contact, a small channel called the fusion pore
forms and expands to release the vesicle’s contents out of the cell.

Synaptobrevin-2 is a SNARE protein found in the vesicle membrane. The part of the protein that
sits in the membrane is called the transmembrane domain; however, it is not clear whether this
domain plays any role in membrane fusion.

The transmembrane domain of synaptobrevin-2 is rich in certain amino acids that are thought to
make it flexible, thereby allowing it to bend and tilt in the membrane. Dhara, Yarzagaray et al.
altered these amino acids in such a way that made this domain either more or less flexible than in
the normal protein. The results show that in both neurons and a type of neuroendocrine cell called
chromaffin cells, exocytosis is significantly reduced and the fusion pores open more slowly when the
transmembrane domain is less flexible. By contrast, exocytosis occurs normally when the
transmembrane domain is more flexible; however, the fusion pore expands more rapidly than
normal.

These results suggest that the flexibility of the transmembrane domain of synaptobrevin-2
promotes membrane fusion and sets the pace at which the fusion pore expands. It is likely that the
transmembrane domain disturbs the surrounding membrane in a way that enables these events to
happen. Further work is needed to address whether this is the case.
DOI: 10.7554/eLife.17571.002
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mechanism wherein TMDs of v-SNARE isoforms with a high content of ß-branched amino acids are

employed for efficient fusion pore expansion of larger sized vesicles, suggesting a general physio-

logical significance of TMD flexibility in exocytosis.

Results

Stabilization of the syb2 TMD helix diminishes synchronous secretion
To study the potential impact of structural flexibility of the syb2 TMD on fast Ca2+-dependent exocy-

tosis, we substituted all core residues of the syb2 TMD with either leucine, valine or isoleucine

(Figure 1A) and measured secretion as membrane capacitance increase in response to photolytic

uncaging of intracellular [Ca]i. Replacing the syb2 TMD by a poly-leucine helix (polyL) strongly

reduced the ability of the syb2 mutant to rescue secretion in v-SNARE deficient chromaffin cells

(Figure 1B). Indeed, a detailed kinetic analysis of the capacitance changes revealed that both com-

ponents of the exocytotic burst, the rapidly releasable pool (RRP) and the slowly releasable pool

(SRP), were similarly diminished, and the sustained rate of secretion was reduced, but no changes in

exocytosis timing were observed (Figure 1B). The similar relative decrease in both, the RRP and the

SRP component, could indicate that the polyL mutation interferes with upstream processes like the

priming reaction leading to impaired pool formation and reduced exocytosis competence. By study-

ing SNARE complex assembly with recombinant proteins, we found that the polyL variant affects nei-

ther the rate nor the extent of SNARE complex formation (Figure 1—figure supplement 1). This

renders the possibility unlikely that the mutant syb2 TMD allosterically affects the upstream SNARE

motif leading to altered interaction with its cognate SNARE partners. Thus, the secretion deficiency

in polyL expressing cells is not due to impaired SNARE complex formation, i.e. by causing changes

in vesicle priming, but rather reflects defective vesicle fusion.
In contrast, replacing the core residues of the syb2 TMD with either a poly-valine (polyV) or poly-

isoleucine (polyI) helix resulted in mutants that support exocytosis like the wildtype protein

(Figure 1C,D). Thus, substitution of a substantial amount of amino acids within the syb2 TMD with

either type of ß-branched residue is tolerated without affecting secretion (Figure 1A,C,D). Since

both, polyV and polyI mutants can functionally replace the wildtype protein, it seems likely that

membrane fusion does not critically depend on conserved key residues at specific positions within

the syb2 TMD. To substantiate this hypothesis, we substituted single highly conserved TMD amino

acids, the G100L, or those residues that remain unchanged in the polyV mutant (syb2 V101A and syb2

V112A, Figure 1A). None of these mutations interfered with the Ca2+-triggered secretion response

(Figure 1—figure supplement 2). Moreover a variant, in which all TMD core residues were substi-

tuted by an alternating sequence of leucine and valine (denoted polyLV) in order to match the ~50%

ß-branched amino acid content of the syb2 TMD, also rescued secretion like the wildtype protein

(Figure 1E). In control experiments we further confirmed by epifluorescence and high resolution

structured illumination microscopy (SIM) that the syb2 TMD mutant proteins were correctly sorted to

chromaffin granules and expressed with similar efficiency as the wildtype protein (Figure 1—figure

supplement 3).
The strong functional differences seen in Ca2+-triggered exocytosis when replacing the TMD core

by leucines and isoleucines (or valines, respectively) are remarkable, given that these aliphatic amino

acids hardly deviate in their physicochemical properties regarding hydrophobicity (Kyte-Doolittle

scale: Leu 3.8, Ile 4.5, Val 4.2) and side chain volume (Leu 168 Å, Ile 169 Å, Val 142 Å). However, an

attractive explanation for the different secretory effects of the amino acids is delivered by their dif-

ferent side chain mobility (Leu > Ile/Val), thereby influencing side chain to side chain interactions and

TMD back bone dynamics (Quint et al., 2010), as will be further explored below (Figure 4).
Taken together, the combined set of mutant phenotypes supports the view that the changes in

overall structural flexibility of the TMD, rather than a requirement of specific residues at key posi-

tions, determine the exocytotic response by changing vesicle fusogenicity, pointing to an active role

of the v-SNARE TMD in membrane fusion.
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Figure 1. Helix stabilizing amino acids in the syb2 TMD diminish secretion. (A) Schematic representation of syb2 and corresponding TMD mutants

(polyL, polyV, polyI, polyLV). (B–E) Mean flash-induced [Ca2+]i levels (top panels) and corresponding CM responses (middle panels) of dko cells

Figure 1 continued on next page
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Changing the content of ß-branched amino acids in the syb2 TMD
controls the speed of transmitter discharge from single vesicles
Analysis of tonic secretion (evoked by continuous intracellular perfusion with solution containing 19

mM free calcium) with simultaneous membrane capacitance (CM) measurements and carbon fiber

amperometry independently confirmed our observations that the polyL mutant diminishes exocyto-

sis, whereas the polyI and polyV variants support secretion at wildtype levels (Figure 2A–D). The

close correlation between the results of both types of secretion measurements for syb2 and its

mutant variants (slope: syb2 0.18 events/fF, r2 = 0.97; polyL 0.17 events/fF, r2 = 0.97; polyV 0.17

events/fF, r2 = 0.95; polyI 0.17 events/fF, r2 = 0.94) shows that the observed CM changes are due to

alterations in exocytosis of catecholamine-containing granules. They further render the possibility

unlikely that mutant-mediated changes of the CM signal are due to premature closure of the fusion

pore and interference with subsequent vesicle endocytosis (Deak et al., 2004; Rajappa et al., 2016;

Xu et al., 2013).
Carbon fiber amperometry allows for resolution of discrete phases of transmitter discharge from

single vesicles, comprising a prespike signal that reflects transmitter release through the narrow ini-

tial fusion pore and a main amperometric spike that coincides with bulk release (Albillos et al.,

1997; Bruns and Jahn, 1995; Chow et al., 1992). The polyL variant not only lowered the frequency

of exocytotic events but also profoundly slowed transmitter release from the vesicle, compatible

with the phenotype of a fusion mutant. The release events were characterized by a decreased ampli-

tude and increased rise-time as well as half-width of the amperometric signal (Figure 2E,F). In clear

contrast, expression of either polyV or polyI variant accelerated catecholamine release compared to

controls, as indicated by significantly higher spike amplitudes, reduced rise-times and half-width val-

ues (Figure 2E,F). Evidently, modifying the content of ß-branched amino acids within the TMD

causes correlated changes in spike waveform, even producing a gain-of-function phenotype in pore

expansion kinetics for TMDs enriched in ß-branched residues. Moreover, TMD mutations also

affected the prespike signal and its current fluctuations, which report transient changes in neuro-

transmitter flux through the early fusion pore (Kesavan et al., 2007). The polyL mutation prolonged

the expansion time of the initial fusion pore, lowered its current amplitude and diminished fluctua-

tions in the signal time-course compared with the wildtype protein (Figure 3). The polyV and polyI

variants shortened prespike duration, increased its amplitude, and current fluctuations. Taken

together, the polyL and poly I/V mutants oppositely affect both, the prespike and the spike phase of

transmitter discharge, implying that conformational properties of the syb2 TMD govern the fusion

process from the opening of the nascent fusion pore to its final expansion.

ß-branched residues substantially enhance TMD flexibility
Our mutational analysis suggested that changes in the conformational properties of the TMD can

cause characteristic fusion defects, thereby indicating a TMD-based mechanism supporting exocyto-

sis. To further investigate this mechanism we studied the structure and dynamics of the TMD

mutants using molecular dynamics simulations of the C-terminal region of syb2 (residues 71–116).

Based on the X-ray crystallographic structure (Stein et al., 2009), syb2 and its mutant variants were

Figure 1 continued

expressing syb2 wt, polyL, polyV, polyI or polyLV mutants. The polyL mutation reduced RRP and SRP size as well as sustained rate of release, whereas

other substitutions of the TMD core residues with valine, isoleucine or a combination of leucine and valine fully restored exocytosis (bottom panels).

The kinetics of release tRRP, tSRP and the secretory delay are unchanged for all mutants. Arrow indicates flash. Data are represented as mean ± SEM and

numbers of cells are indicated within brackets. ***p<0.001, Mann Whitney U test versus syb2.

DOI: 10.7554/eLife.17571.003

The following figure supplements are available for figure 1:

Figure supplement 1. The poly-L mutant forms SDS-resistant SNARE complexes like the wildtype protein.

DOI: 10.7554/eLife.17571.004

Figure supplement 2. Substitution of conserved amino acids within the syb2-TMD does not affect vesicle fusion.

DOI: 10.7554/eLife.17571.005

Figure supplement 3. Syb2 and its TMD mutants are sorted to chromaffin granules with similar efficiency.

DOI: 10.7554/eLife.17571.006
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Figure 2. Modifying the number of ß-branched residues in the syb2 TMD changes the kinetics of cargo discharge. (A) Schematic representation of syb2

and its TMD mutants (polyL, polyV, polyI). (B) Exemplary recordings of CM and amperometry for dko cells expressing syb2 or the polyL mutant (dashed

Figure 2 continued on next page
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embedded in an asymmetric membrane (mimicking the physiological lipid composition of synaptic

vesicles [Sharma et al., 2015; Takamori et al., 2006]) and structural flexibility was calculated from

the root mean square fluctuation (RMSF) of the backbone atoms for each peptide (Figure 4). The

results show that conformational flexibility of the TMD region is significantly lowered in the polyL

and increased in the polyV variant compared with the wildtype protein. Similarly, changes in the root

mean square displacement (RMSD) of the Ca-atoms relative to an ideal a-helix (syb2 0.104 ± 0.004

nm; polyL 0.067 ± 0.003 nm, p<0.001; polyV 0.139 ± 0.005 nm, p<0.001, one-way analysis of vari-

ance versus syb2) are paralleled by alterations in a-helix content of syb2 TMD (79 ± 0.56%) and its

variants (polyL 83 ± 0.56%, and polyV 65 ± 5.6%). Taken together, changing the frequency of ß-

branched residues within the syb2 TMD substantially varies conformational flexibility, which clearly

correlates with alterations in the kinetics of the nascent fusion pore as well as in the spike waveform.

Overall, these data provide strong evidence that structural features of v-SNARE TMDs are crucial for

Ca2+-triggered exocytosis, enabling TMDs to actively promote the fusion process.

Structural flexibility of the N-terminal region of syb2 TMD catalyzes
fusion initiation and fusion pore expansion
Membranes first fuse with their outer leaflets, transiting through a hemifused state, before complete

merger (continuity of both leaflets) is reached. To study whether structural flexibility is required

throughout the entire TMD region or preferentially in one leaflet, we selectively exchanged either

half of the syb2 TMD with leucine residues (Figure 5A). For tonic secretion (intracellular perfusion

with high Ca2+-containing solution, Figure 5B) and synchronized exocytosis (photolytic uncaging of

intracellular Ca2+, Figure 5—figure supplement 1), we found that leucine substitution within the

N-terminal half of the TMD (amino acid 97–104, polyL-Nt, spanning the outer leaflet of the vesicle

membrane) failed to fully rescue exocytosis. A similar replacement of amino acids in the correspond-

ing C-terminal half (amino acids 105–112, polyL-Ct, spanning the inner leaflet of the vesicle mem-

brane) was without any effect when compared with the wildtype protein (Figure 5B and Figure 5—

figure supplement 1). Furthermore, an exchange of the N-terminal amino acids with ß-branched iso-

leucines (polyI-Nt) rescued secretion like the wildtype protein.
Detailed analysis of amperometric events with respect to spike (Figure 5C–E) and prespike prop-

erties (Figure 5—figure supplement 2) showed that exchanging the N-terminal half of the syb2

TMD with either leucine or isoleucine sufficed to reproduce the altered fusion pore behavior seen

with an overall exchange of the TMD residues (compare Figures 2 and 5). For parameters describing

the main spike kinetics we found a clear proportionality between the speed of catecholamine dis-

charge and the number of ß-branched residues near the N-terminal end of the TMD helix (rise-time,

r2= 0.95; half-width r2 = 0.96, Figure 6A,B). Moreover, the pre-spike duration is progressively short-

ened by increasing the fraction of ß-branched residue in the N-terminal half of the TMD (r2 = 0.93)

(Figure 6C). Following the same line, we also found a strong correlation between the frequency of

pre-spike current fluctuations of the mutant variants and their valine/isoleucine-content (r2 = 0.96).

Evidently, increasing or decreasing the number of ß-branched amino acids in the TMD oppositely

controls conformational flexibility in the TMD helix (Figure 4) and the rate of cargo release from sin-

gle vesicle. These findings provide strong evidence for a mechanistic link between TMD flexibility

and the kinetics of fusion pore expansion. However, deviating from this pattern, total secretion in

Ca2+-infusion and Ca2+-uncaging experiments was not further potentiated beyond the wildtype

response by increasing the fraction of ß-branched residues within the N-terminal half of the TMD

Figure 2 continued

lines indicate cell opening initiating intracellular perfusion with 19 mM free Ca2+). (C) Mean capacitance responses over 120 s. (D) Total DCM after 120 s

(top) and amperometric event frequency (bottom) averaged from the indicated number of cells. (E) Properties of the main amperometric spike,

displayed as cumulative frequency distribution for the indicated parameters. Exemplary amperometric events with similar charge for the indicated

groups are shown (right). (F) The polyL mutant prolonged and the polyV or polyI mutations accelerated spike kinetics (causing corresponding changes

in spike amplitude) without affecting quantal size. Values are given as mean of median determined from the parameter’s frequency distribution for each

cell. Data were collected from cells/events measured for syb2 (61/7275), polyL (22/1018), polyV (18/2431), polyI (30/2789). Only cells with >20 events

were considered. Data are represented as mean ± SEM. **p<0.01, ***p<0.001, one way analysis of variance versus syb2.

DOI: 10.7554/eLife.17571.007
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Figure 3. PolyL and polyV (or I) mutations oppositely alter the kinetics of prespike signals. (A) Exemplary prespike

events and analysis of their current fluctuations (highlighted area) during transmitter discharge through a narrow

Figure 3 continued on next page
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(Figure 6D). Most likely, docking and priming reactions become rate-limiting (Sorensen, 2009),

thereby preventing the total release to exceed wildtype levels.
Taken together, the syb2 TMD possesses an inherent functional polarity, with the N-terminal

region being more important for fusogenicity than the C-terminal side. These observations agree

well with previous coarse-grained models of SNARE-mediated fusion events (Risselada et al., 2011),

suggesting a similar directionality of SNARE TMDs in perturbing lipid packing (enhancing lipid

Figure 3 continued

pore. Deflections of the current derivative (red trace) above the threshold (dashed lines = ± 4 SD of base line

noise) were counted as fluctuations (blue trace). The displayed events have a similar total charge and 50%–90%

rise time (dko+syb2: 477fC, 280 ms; dko+polyL: 458fC, 240 ms; dko+polyV: 462fC, 200 ms; dko+polyI: 483fC, 200 ms),

indicating that the different fluctuation behavior is not due to differences in diffusional broadening of the current

signals. (B) PolyL mutation and polyV or I mutations oppositely altered the amplitude and kinetics of the prespike

event, without changing its charge. (C) The average fluctuation frequency (sum of positive and negative

fluctuations) of all events with an amplitude >7 pA as well as of events with spike rise times <340 ms (minimizing a

potential distortion of the signal time course by diffusional broadening) decreased for the polyL mutant and

increased for the polyV/I mutants. Mean rms noise of the current derivative during the prespike signal, serving as

threshold-independent parameter of fusion pore jitter, confirms mutant protein-mediated changes in fusion pore

dynamics. (D–E) Cumulative frequency distributions for fluctuation frequency and rms noise of current derivative

from dko+syb2 (black), dko+polyL (red), dko+polyV (green) and dko+polyI cells (blue). Data were collected from

the indicated number of events (cells) and are represented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, one

way analysis of variance versus syb2.

DOI: 10.7554/eLife.17571.008

Figure 4. Conformational flexibilities of syb2 and its mutant variants. (A) Snapshot from the atomistic simulation for inserted syb2 (residues 71–116) in

an asymmetric, self-assembled membrane (cytoplasmic leaflet, top; intravesicular leaflet, bottom) with the protein backbone depicted in cartoon

representation. The phosphate atoms of lipid and the hydroxyl carbon of cholesterol are shown in the Van der Waals representation. Other atoms of

the lipids are shown as grey lines (water molecules are not shown for clarity). Different lipid moieties are depicted according to the colour code shown

below. Note the asymmetric lipid composition of the bilayer. (B) Root mean square fluctuations (RMSF) of C-a atoms derived from 40 ns simulation runs

for syb2 and the mutants relative to the average structure of the corresponding peptide. Flexibility of the TMD region (residues 97–112) was

determined from non-overlapping 10 ns periods during the last 30 ns of the trajectories for each simulation. The polyV region of the mutant showed on

average an increased flexibility (0.0644 ± 0.0029 nm, p<0.001), while the polyL region (0.0374 ± 0.0017 nm, p<0.05) showed a decreased jitter when

compared with syb2 (0.0472 ± 0.0022 nm, one-way analysis of variance versus syb2). Error bars are s.e.m. of averages calculated from the values of the

individual 10 ns windows (n = 9 for wt, n = 6 for mutants).

DOI: 10.7554/eLife.17571.009
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Figure 5. Structural flexibility of the N-terminal TMD region catalyzes fusion initiation and fusion pore dilation. (A) Schemes of syb2 and corresponding

TMD mutants (polyL-Nt, polyL-Ct, polyLV, polyI-Nt). (B) Mean capacitance changes in response to intracellular perfusion with 19 mM free Ca2+ in the

indicated groups. Total DCM (top) and amperometric event frequency (bottom) measured over 120 s show that only polyL-Nt mutant fails to rescue

Figure 5 continued on next page
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splaying) preferentially in the cytoplasmic leaflets and, thereby, facilitating the first hydrophobic

encounter for forming a lipid bridge between opposing membranes (Figure 6E). Similarly, TMD

backbone dynamics within the outer leaflet of the fusion pore neck may lower its high membrane

curvature, driving fusion pore expansion (Figure 6E).

Lipid anchoring of syb2 aggravates fusion incompetence
A partial rescue of synaptic transmission has previously been observed in cortical syb2-/- neurons

expressing an acylated syb2-CSP fusion protein lacking the TMD (Zhou et al., 2013). This finding

has been interpreted as evidence that v-SNARE TMDs are functionally interchangeable with lipidic

membrane anchors. Opposing this view, a recent study showed that the same lipid-anchored syb2

provides little support for spontaneous synaptic transmission (Chang et al., 2016). We also found

that this acylated syb2-CSP fusion protein was largely inefficient in reconstituting Ca2+-triggered

exocytosis in chromaffin cells (21% of syb2, Figure 7A,B), albeit showing similar expression levels

and sorting to granules as the wildtype protein (Figure 7—figure supplement 1). Interestingly, while

expression of syb2-CSP raises secretion significantly over the level of the dko (2% of syb2), the phe-

notype is still more severe than the secretion deficits seen with the polyL variant (35% of syb2,

Figure 2C,D), reconfirming that the proteinaceous membrane anchor provides an autonomous facili-

tating function in Ca2+-triggered exocytosis. Furthermore, like the polyL mutant, the lipid-anchored

syb2 prolonged the time course of transmitter discharge during the spike phase (without changing

the event charge) (Figure 7C) and even more strongly slowed down kinetics of the early fusion pore

(Figure 7D–F). Collectively, these results highlight the important role of the proteinaceous syb2

membrane anchor in membrane fusion, generally facilitating fusion initiation and pore expansion.

Our data obtained with the acylated syb2-CSP fusion protein appear to deviate from the previously

reported results by Zhou et al. (2013), wherein the mutant protein significantly rescued synaptic

transmission compared to a syb2-RST-mVenus construct serving as control. However, as reported by

Chang et al. (2016), the syb2-RST-mVenus construct does not support wildtype like fusion both, in

neurons and neuroendocrine cells due to the presence of a positively charged arginine residue in

the C-terminal end of the syb2 TMD. Indeed, a previous study has shown that insertion of charged

residues in the C-terminal end of the syb2 TMD impairs the release response (Ngatchou et al.,

2010). Consequently, the reduced ability of the syb2-RST-mVenus construct to rescue neuronal exo-

cytosis may have led to an overestimation of the acylated syb2-CSP response providing an explana-

tion for the apparently discrepant results.
In any case, since SNARE-mediated fusion of SSVs might mechanistically deviate from granule

secretion in neuroendocrine cells, we also analyzed the impact of our syb2 TMD mutants on fast glu-

tamatergic release in autaptic cultures of syb2-/- hippocampal neurons. Viral expression of the polyV

mutant rescued evoked synaptic transmission to the level of wildtype cells, while the polyL mutant

largely failed to support neurotransmitter release (Figure 7—figure supplement 2A–D), which is

reminiscent of our findings in neuroendocrine cells. Immunofluorescence analyses confirmed that

polyL and polyV mutant proteins were indeed targeted to synaptic vesicles with comparable effi-

ciency as the wildtype protein (Figure 7—figure supplement 2E–G). To test whether the flexibility

Figure 5 continued

normal exocytosis. Data are averaged from the indicated number of cells. (C) Properties of the main amperometric spikes displayed as cumulative

frequency distribution for the indicated parameters and color coded according to (A). (D) Exemplary amperometric events with similar charge but

altered release profile for the indicated syb2 variant. (E) PolyL-Nt mutation slowed the spike waveform (reduced amplitude, increased rise time, and half

width) while polyI-Nt increased the amplitude and decreased the rise time and half width. Values are given as mean of median determined from the

indicated parameter’s frequency distribution for each cell. Data were collected from cells/events measured for syb2 (83/9054), polyL-Nt (19/951), polyL-

Ct (18/2684), polyLV (25/3576), polyI-Nt (21/2057). Only cells with >20 events were considered. Data are represented as mean ± SEM. ***p<0.001, one-

way analysis of variance versus syb2.

DOI: 10.7554/eLife.17571.010

The following figure supplements are available for figure 5:

Figure supplement 1. Conformational flexibility of the N-terminal region of syb2 TMD supports LDCV fusion.

DOI: 10.7554/eLife.17571.011

Figure supplement 2. The N-terminal region of syb2 TMD controls kinetics and fluctuations of the early fusion pore.

DOI: 10.7554/eLife.17571.012
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Figure 6. Speed of cargo release is systematically correlated with the number of b-branched amino acids in the N-terminal region of the syb2 TMD. (A)
Schemes of syb2 and corresponding mutants depicting the fraction of b-branched amino acids in the N-terminal region of the TMD (underlined). (B–C)
Increasing the fraction of b-branched amino acids accelerates the rate of cargo release (spike) as well as the dynamics of the nascent fusion pore

(prespike). (D) Tonic and synchronous secretion are reduced with the loss of ß-branched amino acids but cannot be further potentiated by enriching ß-

branched amino acids in the TMD N-terminal region when compared with syb2. (E) Hypothetical models illustrating how conformational flexibility of the

syb2 TMD (specifically of the N-terminal region) enhances lipid splay to promote intermembrane contact (PM, plasma membrane, VM, vesicle

membrane) during fusion initiation and lowers negative membrane curvature (outer leaflet) to facilitate pore expansion. Data are represented as mean

± SEM. ***p<0.001, one-way analysis of variance between indicated groups.

DOI: 10.7554/eLife.17571.013
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Figure 7. Lipid anchored syb2 failed to support normal secretion from chromaffin cells. (A) Mean capacitance responses upon intracellular perfusion

with 19 mM free Ca2+ in the indicated groups. (B) Total DCM as well as amperometric event frequency measured over 120 s show that the lipid-

Figure 7 continued on next page
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of the syb2 TMD is also critical for quantal signaling, we recorded spontaneous excitatory postsynap-

tic currents (mEPSCs) in the presence of 1 mM TTX using mass cultures of hippocampal neurons.
Compared with the wildtype syb2 protein, expression of the polyL mutant in syb2 ko neurons signifi-

cantly reduced the frequency of spontaneous events, whereas the polyV mutant fully rescued spon-

taneous release (ko+syb2: 1.46 ± 0.24 Hz, n = 52; ko+polyL: 0.49 ± 0.12 Hz, n = 23; ko+polyV: 1.42

± 0.31, n = 21). Notably, the frequency of mEPSCs recorded for the polyL mutant is more than

20fold higher compared to syb2 ko neurons (0.02 ± 0.005 Hz, n = 8), emphasizing the gain-of-func-
tion phenotype of the TMD mutant. In contrast, we failed to detect significant alterations in the

mean amplitude of the polyL or polyV-mediated mEPSCs compared with the wildtype controls.

Potential changes in the release profile of small synaptic vesicles (SSVs) may be masked by dendritic

filtering of the receptor-mediated response. Moreover, release from SSVs might be less dependent

on TMD-mediated acceleration of fusion pore expansion due to the high curvature of the vesicle, as

will be discussed below.
Taken together, comparable deficits in exocytosis are observed for the TMD mutants in neurons

as well as neuroendocrine cells indicating similar structural requirements for v-SNARE TMDs to initi-

ate fusion.

Discussion
The membrane-bridging interactions of SNARE proteins bring vesicle and plasma membrane into

close apposition and mediate membrane fusion, but the mechanistic events leading to the formation

and control of the exocytotic fusion pore have remained unknown. Here, we studied whether the
syb2 TMD serves mechanistic functions beyond the passive membrane-anchoring of the force-gener-

ating SNARE complex. By systematically changing the structural flexibility of the syb2 TMD (Fig-

ure 4), we observed secretion phenotypes that highlight the functional impact of the TMD at various

stages of membrane fusion. Our experiments provide first evidence that the syb2 TMD plays an

active role in Ca2+-triggered exocytosis, acting as a crucial catalyst for membrane merger and fusion
pore. These observations raise the important question how TMDs actually contribute to the fusion

mechanism.
While the TMD variants tested here leave the stimulus-secretion coupling unchanged (Figure 1),

mutant syb2 variants designed to dissipate the force transfer between SNARE motif and TMD have

been reported to clearly prolong the exocytotic delay (Kesavan et al., 2007), providing indepen-

dent evidence for a distinctive and autonomous function of the TMD in membrane fusion. Neither

the overall expression level nor colocalization analyses with the intrinsic marker protein cellubrevin
delivered evidence for inefficient sorting of the different mutant proteins to chromaffin granules,

thus attributing potential fusion deficits to changes in TMD-mediated function (Figure 1—figure

supplement 3). An exciting interpretation of our data is that TMD mutations may change protein-

lipid interactions during Ca2+-dependent fusion by altering the conformational dynamics of the heli-

cal backbone. Indeed, previous NMR-studies have shown that increasing the content of ß-branched
amino acids of TMD mimic peptides profoundly enhanced lipid mobility and wobbling of lipid head

Figure 7 continued

anchored syb2 (DTMD-CSP) restored secretion above levels of dko cells but largely failed to support exocytosis like the wildtype protein indicating the

functional necessity of a proteinaceous membrane anchor for unperturbed fusion. Data are averaged from the indicated number of cells. ANOVA

followed by Kruskal-Wallis post hoc test was performed. (C) Properties of the amperometric spike phase, displayed as cell weighted averages show that

the DTMD-CSP mutant decreased the spike amplitude while increasing the spike rise time and half width. (D) Effects of the DTMD-CSP mutation on the

indicated prespike parameters. (E–F) Prespike fluctuations and rms noise of the current derivative are significantly reduced compared to control. Data

were collected from events (cells): dko+syb2 4267 (36); dko+DTMD-CSP 1078 (34) and are represented as mean ± SEM. ***p<0.001, Mann Whitney U

test versus syb2.

DOI: 10.7554/eLife.17571.014

The following figure supplements are available for figure 7:

Figure supplement 1. Lipid-anchored syb2 DTMD-CSP mutant exhibit similar expression and sorting to granules like the wildtype protein.

DOI: 10.7554/eLife.17571.015

Figure supplement 2. b–branched amino acids in the syb2 TMD regulate synaptic vesicle fusion.

DOI: 10.7554/eLife.17571.016

Dhara et al. eLife 2016;5:e17571. DOI: 10.7554/eLife.17571 14 of 25

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.17571.014
http://dx.doi.org/10.7554/eLife.17571.015
http://dx.doi.org/10.7554/eLife.17571.016
http://dx.doi.org/10.7554/eLife.17571


groups (Agrawal et al., 2010, 2007). Hydrophobic nucleation events, in which lipid tails from oppo-

site membranes initially interconnect the adjacent leaflets, have been identified as a highly energy-
demanding step en route to fusion (Kasson et al., 2010; Risselada et al., 2011; Smirnova et al.,

2010). The reduced fusogenicity of vesicles in chromaffin cells expressing either rigid polyL or lipid
anchored syb2 variants indicates that the interplay between flexible SNARE TMDs and surrounding

lipids could promote hydrophobic tail protrusion and thereby fusion initiation (Figure 6). Indeed, our
results are supported by previous in vitro work, showing that isolated SNARE TMDs

(Langosch et al., 2001) or syb2-juxtamemembrane region-TMD constructs (Tarafdar et al., 2015)

facilitate liposome-liposome fusion. A similar dependence on protein-lipid interactions for mem-
brane fusion has previously been observed with viral fusogens (Kasson et al., 2010; Tamm et al.,

2003), suggesting that Ca2+-triggered exocytosis and viral fusion engage common mechanisms to
drive membrane fusion. Given that the formation of an initial lipid stalk is generally observed in

direct vicinity of SNARE TMDs in MD simulations (Risselada et al., 2011), TMD-rigidifying mutations

(e.g. polyL mutation) may lower the probability of lipid splay and thereby produce more unsuccessful
fusion attempts with vesicles arrested in a trapped state prior to membrane merger. As fusion

mutants are usually expected to slow down stimulus secretion coupling, a scenario where vesicles
are led into a trapped state would explain why helix-rigidifying mutations do not alter the kinetics of

the exocytotic burst component (Figure 1). Regardless of the exact underlying mechanism, our
results support a model wherein conformational flexibility of a proteinaceous v-SNARE TMD is

required to surmount the energy barrier for initial membrane merger.
Fast and efficient discharge of bulky cargo molecules from large secretory vesicles is bound to

expansion of the exocytotic fusion pore. Since bilayer bending mechanics allow pores of smaller
vesicles to expand more rapidly (Alvarez de Toledo et al., 1993; Chizmadzhev et al., 1995;

Zhang and Jackson, 2010), increasing the content of ß-branched amino acids in the v-SNARE TMD
can ease the expansion of a lipidic pore for larger vesicles as they fuse. Our results show that system-

atically changing the number of helix-destabilizing, ß-branched valine or isoleucine residues in the

syb2 TMD leads to correlated changes in fusion pore behavior. In particular, increasing the number
of ß-branched residues within the N-terminal half of the TMD causes an unprecedented gain-of-func-

tion phenotype, wherein fusion pore dilation is even accelerated beyond the rate found for the wild-
type protein, emphasizing the key role of structural dynamics of the syb2 TMD in membrane fusion.

Both, substitution of the syb2 TMD with a lipid anchor or with rigidifying leucine residues strongly
slowed down kinetics of transmitter discharge, demonstrating the inherent propensity of the syb2

TMD to promote fusion pore expansion. An attractive explanation for this phenomenon could be

that structural flexibility within the N-terminal half of the syb2 TMD counters the highly negative cur-
vature of the membrane’s outer leaflet to drive expansion of the narrow fusion pore neck

(Figure 6E). Similarly, Ca2+-bound synaptotagmin-1 (syt1) induces positive curvature to the cyto-
plasmic leaflets of the fusing membranes (Hui et al., 2009; Martens et al., 2007) and thereby may

destabilize the early fusion pore (Dhara et al., 2014). In this context, it stands to reason that SNARE
force-mediated membrane straining (Kozlov et al., 2010) and TMD-mediated lipid perturbation

together with syt1’s ability to bend membranes are synergistic mechanisms that provide mutual rein-

forcement to form a nascent lipid bridge between membranes and to drive subsequent pore
expansion.

As an alternative hypothesis, membrane-spanning v- and t-SNARE TMDs have been proposed to
form channel structures that are aligned in a stacked manner to generate a gap junction-like pore

through the vesicular membrane and plasma membrane (Bao et al., 2015; Chang et al., 2015;
Han and Jackson, 2005). However, this concept of a proteinaceous fusion pore is difficult to recon-

cile with our observation that an acylated syb2-CSP fusion protein lacking the TMD can still signifi-
cantly raise secretion over dko levels (Figure 7A,B). Furthermore, TMD variants furnishing

hydrophobic, identical residues can rescue (polyLV, Figure 5 and Figure 5—figure supplement 2)
or even speed up (polyV and polyI) transmitter discharge, albeit these helices neither exhibit any

polarity nor asymmetry with respect to the side-chain volume of residues that could generate differ-

ent surfaces of the putative proteinaceous pore.
Homotypic TMD-TMD interactions have been implicated in fusion between vacuoles

(Hofmann et al., 2006) and may be involved in a supramolecular assembly of SNARE proteins that

precedes the hemifusion state along the fusion pathway (Lu et al., 2008). However, considering the
phenotypes within our set of different TMD mutants (G100L, polyV, polyI, polyLV, polyL-Ct, polyL-
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Nt), we found that neither key residues for syb2 TMD dimerization (G100, Figure 1—figure supple-

ment 2) (Fdez et al., 2010), nor those that comprise the interacting helical face of the TMDs (L99,
C103, I106, I110, [Laage and Langosch, 1997; Roy et al., 2004; Tong et al., 2009]), play a significant

role for membrane fusion or fusion pore expansion.
In this context, it is noteworthy that neither deletion nor substitutions of membrane-proximal

tryptophane (Trp) residues within the juxtamembrane domain (JMD) of syb2 (Borisovska et al.,
2012) were found to alter the tonic secretion response or fusion pore properties as observed here

with the TMD mutants (Figure 5). Thus, it is unlikely that TMD mutants interfere with functions of
the Trp moiety which influences the electrostatic surface potential by controlling the JMD position at

the membrane-water interface (Borisovska et al., 2012).
Moreover, the fully zippered cis-SNARE complex (all SNAREs in one membrane) also establishes

several stabilizing interactions between the TMDs of syb2 (I98, L99, I102, I106) and syntaxin-1 (syx1)
(Stein et al., 2009) that might be compromised by mutating the TMD core residues. Yet, several

lines of evidence render the possibility unlikely that such a scenario is responsible for functional defi-
cits observed with the TMD mutants. First, the complete substitution of syx interacting residues in

syb2 TMD with valine (or isoleucine) had no effect on the total secretion and even accelerated fusion
pore expansion compared with the wildtype protein. Secondly, the polyV (Figure 2) and the polyLV

(Figure 5) mutants exhibited different kinetics of fusion pore expansion, even though the crucial

amino acids I98, I102 and I106 were substituted by valine residues in both mutant variants. These
results counter the view that perturbations of ‘lock and key’ like protein-protein interactions between

syb and syx TMD are responsible for the functional effects of the TMD mutants. Third, neither short
insertions of amino acids (e.g. 2 residue KL insertion) nor insertion of 2 helix breaking proline

residues, immediately upstream of the syb2 TMD (Kesavan et al., 2007), which should interfere with
N- to C-terminal zipping of SNAREs into the bilayer spanning helical bundle, were found to affect

overall secretion or fusion pore properties. Even a 5 amino acid insertion had no functional conse-

quences on fusion pore dynamics (Kesavan et al., 2007). These results together with the strong
fusion deficits observed for polyL and polyL-Nt mutants suggest thatconformational flexibility of the

syb2 TMD (within the cytoplasmic leaflet of the membrane) rather than defined protein-protein inter-
actions upon progressive zipping of syb2/syx TMDs facilitates secretion and fusion pore expansion.

Thus, heterodimerization between v- and t-SNARE TMDs likely succeeds but does not promote
fusion pore opening and expansion. Notably, single point mutations (G100L, V101A, V112A, Fig-

ure 1—figure supplement 2), may similarly change structural flexibility of the TMD. Yet, given the

observed proportionality between the number of ß-branched amino acids and fusion pore parame-
ters (Figure 6), they are not expected to detectably affect fusion pore dynamics.

The increasing energy barrier for larger vesicles to overcome bilayer bending within their nascent
fusion pores is documented in amperometric recordings, showing that larger vesicles form more sta-

ble initial fusion pores (i.e. longer prespike duration, [Alvarez de Toledo et al., 1993;
Chizmadzhev et al., 1995; Zhang and Jackson, 2010]). The observed systematic dependency of

fusion pore dynamics on the number of ß-branched amino acids in the syb2 TMD raises the question
whether structural flexibility of TMDs indeed varies among other v-SNARE isoforms and thus could

facilitate cargo release in the context of diverse physiological processes. Interestingly, v-SNARE iso-
forms responsible for exocytosis of differentially-sized secretory vesicles show a considerable degree

of variability regarding the content of ß-branched amino acids within the N-terminal half of their

TMDs (Table 1). v-SNARE proteins, like VAMP7 and VAMP8, contain more than 70% ß-branched
amino acids within this TMD region and thereby are well-suited for exocytosis of large zymogen

granules and mast cell vesicles facilitating rapid pore expansion and release of their bulky cargo mol-
ecules such as interferon (Krzewski et al., 2011) and hexoaminidase (Lippert et al., 2007;

Wang et al., 2004). Others, like cellubrevin (VAMP3) or syb2 (VAMP2), with an intermediate content
of ß-branched amino acids (33% and 44%, respectively), are responsible for exocytosis of smaller-

sized vesicles such as chromaffin granules (Borisovska et al., 2005), cytotoxic T-cell lytic granules

(Matti et al., 2013) or small-synaptic vesicles (SSV) (Schoch et al., 2001), whereas syb1 with only
22% ß-branched amino acids preferentially mediates SSV exocytosis to release classical neurotrans-

mitters at the NMJ (Li et al., 1996; Liu et al., 2011). Thus, the number of helix-destabilizing ß-
branched amino acids within the N-terminal half of different v-SNARE TMDs appears to be evolu-

tionary adapted to the size of vesicles to catalyze fusion pore expansion and facilitate bona fide
cargo release. Such a mechanism could also tip the balance between an expanding or non-
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expanding fusion pore, on the one hand ensuring efficient discharge of bulky cargo molecules from

large vesicles and on the other hand favoring release of small cargo as well as rapid recycling of

SSVs by reducing the likelihood of complete merger with the plasma membrane.
Overall, our results unmask an active role of the proteinaceous TMD in membrane fusion that

clearly goes beyond simple membrane anchoring and may be used to optimize release from differ-

entially sized vesicles. ß-branched amino acids are key determinants for the fusogenic role of the

v-SNARE TMD, most likely promoting the conformational dynamics of the TMD helix, which may per-

turb the packing of the surrounding phospholipids and thereby facilitate first intermembrane contact

as well as fusion pore expansion. Taken together, SNARE proteins do not only act as force genera-

tors by continuous molecular straining on membranes, but also catalyze membrane merger via struc-

tural flexibility of their TMDs.

Materials and methods

Culture of chromaffin cells and hippocampal neurons
Experiments were performed on embryonic mouse chromaffin cells prepared at E17.5–E18.5 from

double-v-SNARE knock-out mice (dko cells; Synaptobrevin-/-/Cellubrevin-/-, [Borisovska et al.,

2005]) or syb2 knock-out mice (syb2 ko; Synaptobrevin-/- [Schoch et al., 2001]). Preparation of

adrenal chromaffin cells was performed as described before (Borisovska et al., 2005). Recordings

were done at room temperature on 1–3 days in culture (DIC) and 4.5–5.5 hr after infection of cells

with virus particles.
Autaptic cultures of hippocampal neurons were prepared at E18 from syb2 knock-out mice, as

described previously (Bekkers and Stevens, 1991; Guzman et al., 2010; Schoch et al., 2001).

Recordings were performed at room temperature on days 11–15 of culture.

Viral constructs
For expression in chromaffin cells, cDNAs encoding for syb2 and its TMD mutants were subcloned

into the viral plasmid pSFV1 (Invitrogen, San Diego, CA), upstream of an internal ribosomal entry

site (IRES) controlled open reading frame that encodes for enhanced green fluorescent protein

(EGFP). EGFP expression (excitation wavelength 477 nm) was used as a reporter to identify infected

cells. Mutant constructs were generated by PCR using the overlap expansion method

(Higuchi et al., 1988). All mutations were confirmed by DNA sequence analysis (MWG Biotech, Ger-

many). Virus cDNA was linearized with restriction enzyme SpeI and transcribed in vitro by using SP6

RNA polymerase (Ambion, USA). BHK21 cells were transfected by electroporation (400V, 975 mF)

with a combination of 10 mg syb2 (wildtype/ mutant) and pSFV-helper2 RNA. After 15 hr incubation

Table 1. TMD sequence alignment of exocytotic v-SNARE variants. Amino acid residues comprising the putative TMD regions of the
indicated v-SNARE variants are colored red. Note the different number and percentage of ß-branched amino acids (valine or
isoleucine, bold) in the N-terminal half of the TMD as quantified on the right. Vesicle diameters are taken from the following
references for small synaptic vesicles (Takamori et al., 2006), chromaffin granules (Borisovska et al., 2005), cytotoxic T-cell lytic
granules (Ming et al., 2015), insulin granules (Fava et al., 2012), mast cell granules (Alvarez de Toledo et al., 1993), zymogen
granules (Nadelhaft, 1973) and sequences were obtained from UniProt database.

vesicle
size

vesicle type
(diameter)

v-SNARE
isoform
(M. musculus)

Transmembrane domain
N term. C term.

no. / % of V
or I in the
N-terminus

small small synaptic vesicles (40 nm) Synaptobrevin 1 93
KNCK MMIMLGAIC AIIVVVIVI YFFT

118 2 / 22

inter-
mediate

small synaptic vesicles (40 nm) chromaffin
(120 nm), lytic (250 nm)
and insulin (240 nm) granules

Cellubrevin 78
KNCK MWAIGISVL VIIVIIIIV WCVS

103 3 / 33

Synaptobrevin 2 91
KNLK MMIILGVIC AIILIIIIV YFST

116 4 / 44

large mast cell and zymogen granules (500–800 nm) VAMP7 185
KNIKLTIIIIIVSIV FIYIIVSLLCGGFTW

215 8 / 73

VAMP8 72
KNVK MIVIICVIV LIIVILIIL FATG

97 7 / 77

DOI: 10.7554/eLife.17571.017
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(31˚C, 5% CO2), virions released into the supernatant were collected by low speed centrifugation

(200 g, 5 min), snap-frozen and stored at -80˚C (Ashery et al., 1999).
For transfection of neurons, cDNAs encoding for syb2 and its mutants were subcloned into pRRL.

sin.cPPT.CMV.WPRE lentiviral transfer vector (Follenzi et al., 2000), which contains a cPPT sequence

of the pol gene and the posttranscriptional regulatory element of woodchuck hepatitis virus

(Follenzi et al., 2002). To identify transfected cells, syb2 proteins were expressed as fusion con-

structs with the monomeric red fluorescent protein (mRFP) linked to the C-terminal domain of syb2

via a 9aa linker (GGSGGSGGT). Mutant constructs were cloned analogous to the methods described

above were verified by DNA sequence analysis. Lentiviral particles were produced as previously

described (Guzman et al., 2010). Briefly, a 85% confluent 75 cm2 flask of 293FTcells (Invitrogen) was

transfected with 10 mg of the transfer vector, and 5 mg of each helper plasmid (pMDLg/pRRE, Addg-

ene #12251; pRSV-Rev, Addgene #12253; pMD2.G, Addgene #12259) using a standard CaCl2-PO4

transfection protocol. Medium was exchanged 8 hr after transfection, viral particles were harvested

after 48–72 hr, concentrated using a centrifugal device (100 kDa Molecular weight cutoff; Amicon

Ultra-15; Millipore) and immediately frozen and stored at -80˚C. Primary neurons were transfected

with 300 ml of viral suspension (1DIC).

Whole-cell capacitance measurements and amperometry of chromaffin
cells
Whole-cell membrane capacitance measurements and photolysis of caged Ca2+ as well as ratiomet-

ric measurements of [Ca2+]i were performed as described previously (Borisovska et al., 2005). The

extracellular Ringer’s solution contained (in mM): 130 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 30 glucose, 10

HEPES-NaOH, pH 7.3, 320 mOsm. Ratiometric [Ca]i measurements were performed using a combi-

nation of fura2 and furaptra (Invitrogen) excited at 340 nm and 380 nm. The composition of the

intracellular solution for flash experiments was (in mM): 110 Cs-glutamate, 8 NaCl, 3.5 CaCl2, 5 NP-

EGTA, 0.2 fura-2, 0.3 furaptra, 2 MgATP, 0.3 Na2GTP, 40 HEPES-CsOH, pH 7.3, 310 mOsm. The

flash-evoked capacitance response was approximated with the function: f(x) = A0 + A1(1!exp[!t/

t1]) + A2(1!exp[!t/ t2]) + kt, where A0 represents the cell capacitance before the flash. The param-

eters A1, t1, and A2, t2, represent the amplitudes and time constants of the rapidly releasable pool

and the slowly releasable pool, respectively (Rettig and Neher, 2002). The stimulus-secretion delay

was defined as the time between the flash and the intersection point of the back-extrapolated fast

exponential with the baseline.
Production of carbon fiber electrode (5 mm diameter, Amoco) and amperometric recordings with

an EPC7 amplifier (HEKA Elektronik) were done as described before (Bruns, 2004). For Ca2+ infusion

experiments, the pipette solution contained (in mM): 110 Cs-glutamate, 8 NaCl, 20 DPTA, 5 CaCl2,

2 MgATP, 0.3 Na2GTP, 40 HEPES-CsOH, pH 7.3, 310 mOsm (19 mM free calcium). Amperometric

current signals were filtered at 2 kHz and digitized gap-free at 25 kHz. Amperometric events with a

charge ranging from 10 to 5000 fC and peak amplitude >4 pA were selected for frequency analysis,

while an amplitude criterion of >7 pA was set for the analysis of single spike characteristics. For fluc-

tuation and rms noise analyses prespike signals with durations longer than 2 ms were considered

and the current derivative was additionally filtered at 1.2 kHz. Fluctuations exceeding the threshold

of ± 6 pA/ms (~4 times the average baseline noise) were counted. The number of suprathreshold

current fluctuations divided by the corresponding prespike signal duration determines the fluctua-

tion frequency.

Electrophysiological measurements of synaptic currents
Whole-cell voltage-clamp recordings of synaptic currents were obtained from isolated autaptic or

mass cultures of hippocampal neurons. All experiments include measurements from >3 different cul-

ture preparations and were performed on age-matched neurons derived from mice of the same lit-

ter. Intracellular solution contained (in mM): 137.5 K-gluconate, 11 NaCl, 2 MgATP, 0.2 Na2GTP, 1.1

EGTA, 11 HEPES, 11 D-glucose, pH 7.3. Extracellular solution contained (in mM) 130 NaCl, 10

NaHCO3, 2.4 KCl, 2 CaCl2, 2 MgCl2, 10 HEPES, 10 D-glucose, pH 7.3, 295 mOsm. To minimize the

potential contribution of GABAergic currents the reversal potential of chloride-mediated currents

was adjusted to the holding potential. Neurons were voltage-clamped at !70 mV (without correction

for the liquid junction potential, V LJ 9.8 mV) with an EPC10 amplifier (HEKA Electronic) under
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control of Pulse 8.5 program (HEKA Electronic) and stimulated by membrane depolarizations to +10

mV for 0.7 ms every 5 s (0.2 Hz). Cells with an average access resistance of 6–12 MW and with 70–

80% resistance compensation were analyzed. Current signals were low-pass filtered at 2.9 kHz (four

pole Bessel filter EPC10) and digitized at a rate of 10 or 50 kHz. The readily releasable pool (RRP)

was determined by a 5 s application of hypertonic sucrose solution (500 mM sucrose) using a grav-

ity-fed fast-flow system (Bruns, 1998). To accurately calculate the RRP size, the integral of current

flow caused by a hypertonic solution was corrected by subtracting the amount of steady-state refill-

ing and exocytosis that occurred during hypertonic challenges (Stevens and Wesseling, 1999). For

recordings of spontaneous mEPSCs, mass cultures of hippocampal neurons were bathed in Ringer’s

solution containing 1 mM tetrodotoxin (TTX). To determine the mEPSC properties with reasonable

fidelity events with a peak amplitude >15 pA (~5 times the S.D. of the background noise) and a

charge criterion >25 fC were analyzed using a commercial software (Mini Analysis, Synaptosoft, Ver-

sion 6.0.3).

Biochemistry
SNAP-25 (amino acids 1–206) and Syntaxin 1a (amino acids 1–262) were expressed with an N-termi-

nal 6-histidine tag (His6) in the E. coli strain BL21DE3 and purified using nickel-nitrilotriacetic acid-

agarose (Qiagen, Hilden, Germany). Recombinant variants of syb2 (amino acids 1–116) and syb2-

polyL were expressed as N-terminal tagged GST fusion proteins (pGEX-KG-vector) in the E. coli

strain BL21DE3 and purified using glutathione-agarose according to the manufacturer’s instructions.

All column elutes were analyzed for integrity and purity of the expressed proteins by SDS-PAGE and

staining with Coomassie blue. SNARE complexes were formed by mixing equal molar amounts (~5

mM) of the proteins and incubating at 25˚C for the indicated times (Figure 1—figure supplement 1).

The binding buffer contained (in mM): 100 NaCl, 1 DTT, 1 EDTA, 0.5% Triton X-100, 20 Tris (pH 7.4).

Assembly reactions were stopped by adding 5xSDS sample buffer. The ability of SNARE proteins to

form SDS-resistant complexes was analyzed by SDS-PAGE (without boiling the samples) and Coo-

massie blue staining of protein bands.

Immunocytochemistry
Chromaffin cells were processed 3.5 hr after virus infection for immunolabeling as described previ-

ously (Borisovska et al., 2012). An affinity purified mouse monoclonal antibody against syb2 (clone

69.1, antigen epitope amino acid position 1–14, kindly provided by R. Jahn, MPI for Biophysical

Chemistry, Göttingen, Germany) and a rabbit polyclonal antibody against ceb (TG-21, synaptic sys-

tem) were used for the immunocytochemical analysis. For epifluorescence microscopy, a Zeiss Axio-

Vert 200 microscope was used, digital images (8 bit encoded) were acquired with a CCD camera

and AxioVert Software (Zeiss, Germany) and analyzed with ImageJ software version 1.45. The total

intensity of the fluorescent immunolabel was determined from (area of interest comprising the outer

cell perimeter – area of interest comprising the cell nucleus).
To determine the localization and sorting of the mutant syb2 variants in large dense core vesicles,

high resolution structured illumination microscopy (SIM) was employed. Cells were imaged through

a 63x Plan-Apochromat (NA, 1.4) oil-immersion objective on the stage of a Zeiss Axio Observer with

excitation light of 488 and 561 nm wavelengths. The ELYRA PS.1 system and ZEN software 2011

(Zeiss) were used for acquisition and processing of the images for SIM. Properties of syb2-fluores-

cent puncta in z-stacks were analyzed with the software package ImageJ, version 1.45. After thresh-

old subtraction, Mander’s weighted colocalization coefficients were determined from the sum of

syb2 pixels intensities that colocalizes with ceb, divided by the overall sum of syb2 pixels intensities

(Bolte and Cordelieres, 2006). Therefore MSyb2 = SSyb pixel intensity (coloc. ceb pixel)/ SSyb pixel

intensity (Manders et al., 1993).
For immunostaining of the hippocampal neurons, cells were processed on 13 DIC as described

for the chromaffin cells. Neurons were imaged with confocal microscope (LSM 510; Carl Zeiss) using

the AxioVision 2008 software (Carl Zeiss) and a 100x, 1.3 NA oil objective at room temperature.

Images were analyzed with the software package ImageJ (version 1.45) and SigmaPlot 8.0 (Systat

Software, Inc.). Immunopositive spots were determined using a threshold-based detection routine,

with the threshold adjusted to the background signal of the neuronal process. Immunosignals were
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quantified as mean fluorescent intensity per puncta. For the analysis of synaptic density, synaptophy-

sin-positive puncta were counted along 50 mm length of a neuronal process.

Molecular dynamics simulations
The atomistic structure of the C-terminal region of syb2 (residues 71–116) was obtained from the

X-ray crystallographic structure (Stein et al., 2009) and the missing C-terminal residue of syb2 (resi-

due 116) was added using Modeller (Sali and Blundell, 1993). The insertion of the transmembrane

domain of syb2 in an asymmetric bilayer was carried out using a self-assembly procedure described

elsewhere (Sharma et al., 2015). Briefly, the atomistic structure was converted into a coarse-grained

(CG) representation using a PerlScript file adapting the Martini coarse-graining method

(Monticelli et al., 2008). The CG protein was positioned at the center of a box with dimensions of

10 " 10 " 11 nm along with overlapping boxes of randomly placed cytoplasmic (CP) lipids and intra-

vesicular (IV) lipids. The composition of CP lipids was 22 Palmitoyl-Oleoyl-PS (POPS), 76 Palmitoyl-

Oleoyl-PE (POPE) and 92 cholesterol (CHOL) molecules and IV lipids was 22 Palmitoyl-sphingomyelin

(PPCS), 66 Palmitoyl-Oleoyl-PC (POPC) and 52 CHOL. The resulting lipid box was filled with CG

water and an appropriate number of Na+ ions were added to preserve electro-neutrality. This was

followed by 1000 steps of energy minimization using steepest descent algorithm after which ten pro-

duction runs were carried out, each for 200 ns, using a time step of 2 fs. The effective time sampled

in the production runs was therefore 2 ms. The CG simulations were analyzed for tilt angle of syb2

transmembrane domain and location of WW domain with respect to the phosphate groups of the

membrane. The martini force field employs secondary structure constraints that do not allow

changes in conformational states. Based on the CG analyses a representative structure was chosen

and converted to an atomistic (AT) representation using a reverse transformation protocol

(Wassenaar et al., 2014). Starting from the reverse-transformed atomistic wildtype structure of the

syb2 C-terminal domain in the membrane, residues 97–112 were mutated to either Leu or to Val res-

idues using Modeller to generate the respective mutants. The generated atomistic representations

of syb2, polyL and polyV mutants were initially equilibrated for 2 ns with position restraints on the

backbone heavy atoms using a harmonic force constant of 1000 kJ mol–1 nm–2. After this short equil-

ibration, three 40 ns long production simulations were performed for the wildtype starting from dif-

ferent random velocities. For the mutants, two independent 40 ns long simulations were carried out.

All analyses were done on the last 30 ns simulation, unless mentioned otherwise.
The lipid models used in the CG simulations, POPS, POPE, POPC, PPCS and the cholesterol

model were CG Martini models and simulated using Martini force field ver. 2.0 and standard martini

simulation parameters with a time step of 20 fs (Monticelli et al., 2008). The AT system was

described using Slipids (Stockholm lipids) (Jambeck and Lyubartsev, 2012) for lipids, AMBER99SB-

ILDN (ff99SB-ILDN) (Lindorff-Larsen et al., 2010) for protein and the waters were described using

TIP3P (Jorgensen et al., 1983). A time step of 2 fs was used for AT simulations. All bonds were con-

strained using the LINCS algorithm. The bonds in water were constrained using the analytical SET-

TLE method (Miyamoto and Kollman, 1992). The pressure was kept constant at one atmosphere by

a Parrinello-Rahman barostat (Parrinello and Rahman, 1981) with a coupling constant of 10.0 ps

and an isothermal compressibility of 4.5 " 10–5 bar–1. A semi-isotropic coupling scheme was

employed where the pressure in the xy plane (bilayer plane) is coupled separately from the z direc-

tion (bilayer normal). The Nosé-Hoover thermostat (Hoover, 1985; Nose, 1984) was used to main-

tain a constant temperature (323 K) with a coupling constant of 0.5 ps. Electrostatic interactions

were calculated at every step with the particle-mesh Ewald method (Essmann et al., 1995) with real-

space cutoff of 1.0 nm. The van der Waals interactions were cut off at 1.4 nm. All simulations were

carried out with the GROMACS package version 4.6, (Pronk et al., 2013). Analyses were performed

by using utilities within the GROMACS package. The secondary structure analyses were carried out

using the dictionary of secondary structure of proteins (DSSP) method (Kabsch and Sander, 1983).

Statistical analysis
Values are given as mean ± SEM (standard error of mean) unless noted otherwise in the figure

legends. To determine statistically significant differences, one-way analysis of variance and a Tukey–

Kramer post hoc test were used, if not stated otherwise.
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Chow RH, von Rüden L, Neher E. 1992. Delay in vesicle fusion revealed by electrochemical monitoring of single
secretory events in adrenal chromaffin cells. Nature 356:60–63. doi: 10.1038/356060a0
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